2018

MATRICULATION EXAMINATION DEPARTMENT OF MYANMAR EXAMINATION

MATHEMATICS Time Allowed: (3) Hours WRITE YOUR ANSWERS IN THE ANSWER BOOKLET.

SECTION (A)

(Answer ALL questions. Choose the correct or the most appropriate answer for each question. Write the letter of the correct or the most appropriate answer.)

1. (1) If
$$f(x) = 3x + 1$$
 and $g(x) = 2x^2 - 3$, then $(g \circ f)(2) = A$. 91 B. 93 C. 95 D. 97 E. 99

(2) An operation \odot is defined by $a \odot b = a^2 + b^2$. Then $(2 \odot 3)(1 \odot 2) = A. 8$ B. -8 C. 18 D. -18 E. 65

(3) The remainder when $2x^3 + 3x^2 - 6x - 4$ is divided by 2x + 3 is A. 2 B. -2 C. 4 D. -5 E. 5

(4) x-2 is a factor of $x^{n+2} + 5x^n - 10x - 52$. Then n = A. 2 B. 3 C. 4 D. 5 E. 6

(5) If $(2+3x)^{2018} = c_0 + c_1x + c_2x^2 + c_3x^3 + \cdots + c_{2018}x^{2018}$, then $c_0 - c_1 + c_2 - c_3 + \cdots + c_{2018} =$ A. 2018 B. 2019 C. 1 D. -1 E. 0

(6) In the expansion of $(1 + ax)^{24}$ where a > 0, the coefficient of x^2 is 1104, then a = A. 2 B. -2 C. $-\frac{1}{2}$ D. $\frac{1}{2}$ E. 4

(7) The solution set of the inequation $x^2 - 2 > 7$ is A. $\{x \mid x > 3\}$ B. \varnothing C. R D. $\{x \mid x < -3 \text{ or } x > 3\}$ E. $\{x \mid -3 < x < 3\}$

(8) In an A.P., $u_1 = 2$, $u_{n+1} = u_n + \frac{1}{2}$, then $S_n = A$. $\frac{n+1}{2}$ B. $\frac{n+3}{2}$ C. $\frac{n-1}{2}$ D. $\frac{n^2+3n}{4}$ E. $\frac{n^2+7n}{4}$

(9) The fourth, seventh and tenth terms of a G.P. are a, b, c respectively, then A. $a^2 = b^2 + c^2$ B. $b^2 = ac$ C. $a^2 = bc$ D. a = bc E. none of these

(10) Given that three consecutive terms of a G.P. are 3^{x+3} , 9^x and 729. Then x = A. 4 B. 3 C. 2 D. 1 E. 5

(11) If $A = \begin{pmatrix} 1 & a^2 \\ 2a+3 & 1 \end{pmatrix}$, A = A' and A is non-singular, then a = A. 3 or -1 B. -3 or 1 C. 3 only D. -1 only E. 1 only

(12) If $P = \begin{pmatrix} 2 & 0 \\ 4 & 2 \end{pmatrix}$ and det(xP') = 16, then x = A. 2 B. ± 2 C. 4 D. ± 4 E. 16

(13)	If any number is chosen at random from the whole numbers 1 to 60 inclusive, the probability of getting a prime number is				
	A. $\frac{7}{30}$	B. $\frac{1}{4}$	C. $\frac{4}{15}$	D. $\frac{17}{60}$	E. $\frac{3}{10}$
(14)		times. If the exp pected frequency B. 180			ch is divisible by 3 is E. 30
(15)					
(13)	Chords AB and CD of a circle intersect at P within the circle. If $AP = x$, $PB = x - 2$, $CP = 8$ and $PD = 3$, then $x = 1$				
	A. 2		C. 4	D. 5	E. 6
(16)		lic quadrilateral. I B. 30°			$\angle D - 2\angle C =$ E. 55°
(17)	AC = 6 and BI	$\alpha(\Delta PAB) : \alpha(\Delta PAB) = 3$, then $AP = B$. 3.5 E. 4		D 3 B 6 A	P
(18)	The position vectors, relative to an origin O, of the points A and B are $\binom{2}{7}$ and $\binom{5}{3}$				
	respectively. Then the unit vector parallel to AB is				
		B. $\begin{pmatrix} -3\\4 \end{pmatrix}$			$E\frac{1}{5} \binom{3}{-4}$
(19)		point (3, 4) by re B. (4, 3)			s E. none of these
(20)	$\cos^2\frac{\pi}{3} + \sin^2\frac{2}{3}$ A. 2		C. 3	D. – 3	E. 4
(21)	sin 180° + sin 3 A. 0.5	30° = B. – 0.5	C. 1	D. 1.5	E. – 1.5
(22)	$\sin(\alpha + \beta) - \sin \alpha$ A. $2\sin\alpha\cos\beta$		C. 2 cos α cos β	D. 2 sin α sin β	$E 2\sin\alpha\sin\beta$
(23)	The gradient of	f the tangent to th $B2$	the curve $3xy - y^2$	= x - 1 at the p	oint $(0, -1)$ is
(24)	The stationary point of the curve $y = 2x + \frac{1}{x^2}$ is at $x = \frac{1}{x^2}$				
			C. 2		E. ±1
(25)	$\frac{d}{dx}(\sin x - \cos x)^2 =$				
(_+)	W/1		C. 2cos 2x	D. – 2cos 2x	E. $2\sin x - 2\cos x$
					(25 marks)
					(Z.) IIIarks)

SECTION (B)

(Answer ALL questions)

2. If $f(x) = px^2 + 1$ where p is a constant and f(3) = 28, find the value of p. Find also the formula of $f \circ f$ in simplified form. (3 marks)

(OR) The expression $x^3 - 2x^2 - kx + 6$ and $x^3 + x^2 + (8 - k)x + 10$ have the same remainder when divided by x + a. Show that $3a^2 - 8a + 4 = 0$. (3 marks)

- 3. If x, y, z is a G.P., show that log x, log y, log z is an A.P. (3 marks)

 (OR)

 If log x, log y, log z is an A.P., show that x, y, z is a G.P. (3 marks)
- 4. Given: ABCDEF is an inscribed regular hexagon.

 PF is a tangent to the circle O at F.

 Prove: PF and EA are parallel.

 B

 C

 B

 C

 (3 marks)
- 5. Prove that $\frac{1-\cos 2x + \sin 2x}{1+\cos 2x + \sin 2x} = \tan x.$ (3 marks)
- 6. Evaluate $\lim_{x \to 1} \frac{x^4 1}{x^3 1}$ and $\lim_{x \to 0} \frac{\frac{1}{x 1} + \frac{1}{x + 1}}{x}$. (3 marks)

SECTION (C)

(Answer any SIX questions)

- 7.(a) Let $f: R \to R$ and $g: R \to R$ be defined by f(x) = x + 7 and g(x) = 3x 1. Find $(f^{-1} \circ g)(x)$ and $(g^{-1} \circ f)(x)$. What are the values of $(f^{-1} \circ g)(3)$ and $(g^{-1} \circ f)(2)$? (5 marks)
 - (b) A binary operation \odot on R is defined by $x \odot y = (x + 2y)^2 3y^2$. Show that the binary operation is commutative. Find the possible values of k such that $(k-3) \odot (k+2) = 25$. (5 marks)
- 8.(a) Given $f(x) = x^3 + px^2 2x + 4\sqrt{3}$ has a factor $x 2\sqrt{3}$, find the value of p. Show that $x + \sqrt{2}$ is also a factor and solve the equation f(x) = 0. (5 marks)
 - (b) Use the binomial theorem to find the value of $(x + \sqrt{x^2 1})^6 + (x \sqrt{x^2 1})^6$. (5 marks)
- 9.(a) Find the solution set of the inequation $5x^2 < 18x + 8$ by graphical method and illustrate it on the number line. (5 marks)
 - (b) An A.P. contains 25 terms. The last three terms are $\frac{1}{x-4}$, $\frac{1}{x-1}$ and $\frac{1}{x}$. Calculate the value of x and the sum of all the terms of the progression. (5 marks)
- 10.(a) If a, b, c be in A.P., and if u, v be the A.M. and G.M. between a and b, x, y the A.M. and G.M. between b and c, then prove that $u^2 v^2 = x^2 y^2$. (5 marks)
 - (b) Solve the matrix equation $\begin{pmatrix} -2 & 3 \\ 1 & -4 \end{pmatrix} X = \begin{pmatrix} -3 & -5 \\ -16 & -20 \end{pmatrix}$. Hence find x and y, if $X = \begin{pmatrix} x+2y & 16 \\ 7 & 2x-y \end{pmatrix}$. (5 marks)

- 11.(a) Find the inverse of the matrix $\begin{pmatrix} 4 & 3 \\ 7 & 6 \end{pmatrix}$, and use it to solve the system of equations 7x + 6y + 16 = 0 3y + 4x + 7 = 0. (5 marks)
 - (b) How many 3-digit numerals can you form from 3, 0, 1 and 6 without repeating any digit? Find the probability of an even number and find the probability that a numeral which is divisible 3. (5 marks)
- 12.(a) If A, B, C are three points on the circumference of a circle such that the chord AB is equal to the chord AC, prove that the tangent at A bisects the exterior angle between AB and AC. (5 marks)
 - (b) Two circles intersect at A and B. A point P is taken on one so that PA and PB cut the other at Q and R respectively. The tangents at Q and R meet the tangent at P in S and T respectively. Prove that ∠TPR = ∠BRQ and PBQS is cyclic. (5 marks)
- 13.(a) In the figure $\angle APQ = \angle C$, AP : PB = 3 : 1 and AQ : QC = 1 : 2. If AQ = 2, find the length of AP and the ratios of $\alpha(\triangle APQ) : \alpha(\triangle ABC)$ and $\alpha(\triangle APQ) : \alpha(BCQP)$.
 - (b) Points A and B have position vectors $\binom{5}{1}$ and $\binom{3}{4}$ respectively, relative to an origin O. Given that point C with position vector $\binom{0}{k}$ lies on AB produced, calculate the value of k and the value of k and the value of k (5 marks)
- 14.(a) If $\alpha + \beta + \gamma = 180^{\circ}$, show that $\cos \frac{\alpha}{2} + \cos \frac{\beta}{2} + \cos \frac{\gamma}{2} = 4\cos \frac{\beta + \gamma}{4}\cos \frac{\gamma + \alpha}{4}\cos \frac{\alpha + \beta}{4}$. (5 marks)
 - (b) In \triangle ABC, c = 10, b = 6 and a = 5. Check whether \angle ACB is acute or obtuse and find its magnitude. (5 marks)
- 15.(a) Given that $y = \sin(\sin x)$, prove that $\frac{d^2y}{dx^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0$. (5 marks)
 - (b) Show that the point $(0, \pi)$ lies on the curve $x^2 \cos^2 y = \sin y$. Then find the equations of tangent and normal to the curve at the point $(0, \pi)$. (5 marks)